
New trends in system software

security
Secappdev 2019

Frank Piessens, February 18, 2019

Introduction

› The field of ICT security addresses the problem of

Maintaining desirable properties of ICT systems in the presence of

intelligent adversaries trying to break these properties

› In practice:

“Desirable properties” are hard to nail down

But we recognize security failures when we see them

Viruses, worms, defacements, data leaks, ransomware, DDOS, jailbreaks, ...

What is ICT security?

2

An important underlying cause: insecure software

› Software implementation vulnerability =

A defect in software code (a “bug”) that can be exploited by an attacker to

break some security objective of the software

› Around 100.000 such vulnerabilities listed in the Common

Vulnerabilities and Exposures (CVE) list

Buffer overflows, SQL injection, cross-site scripting, race conditions, side-

channel vulnerabilities, information leaks, incomplete access mediation,

cross-site scripting, double free, …

3

4

Vulnerabilities in system software

› System software (operating systems, low-level libraries, servers, browsers,

…) is often programmed in performance-friendly, “close-to-hardware”

languages like C / C++

› These languages are infamous for the broad class of memory management

vulnerabilities

› While many mitigation techniques are deployed, these vulnerabilities still

represent a major threat

› Moreover, a vulnerability in system software affects the security of all

applications running on the system

5

Purpose of this lecture:

› Provide insight in a number of new trends in system software

security

New hardware architectures for the safe execution of C

Capability machines

New language designs for systems programming, safe by design

Rust ownership types

[If time: new attacks]

[Spectre style attacks]

6

Overview of the rest of the talk

› System model and attacker model

Recap of how C-like languages are executed on standard processors

Interactive attacker model

› Memory capabilities for run-time security

› Ownership types for compile-time security

› [The next wave of attacks]

› Conclusions

7

System model / attacker model / security objective

› A rigorous study of security requires:

A system model: a model of the system under attack that is sufficiently

detailed to explain the attacks one cares about

Our systems are essentially C programs, but we need to model how

compilation works to explain relevant attacks

An attacker model: a precise description of what an attacker can and

cannot do

A security objective: either a description of system properties to be

maintained, or of attacks/threats to be avoided

8

Platform model

› Target platform consists of:

A memory of MAX words (addresses 0 .. MAX-1)

Making abstraction of issues like word-size,

padding, …

A CPU with

Registers:

PC, x0 (=0), x1(=ra), x2(=sp), x3(=gp), x4,…

Typical RISC-like instructions

Arithmetic/logical/shift

Memory access

Conditional/unconditional branch

Instructions can be encoded as words

› Details vary across platforms

9

Example instruction Semantics

add x5,x6,x7 x5 = x6 + x7

addi x4,x5,10 x4 = x5 + 10

lw x4,50(x5) x4 = M[x5 + 50]

sw x5,30(x4) M[x4+30] = x5

beq x5,x6,12 if x5==x6 goto PC+12

jal 12 x1 = PC+1; goto PC+12

jalr 10(x5) x1 = PC+1; goto x5+10

Source code model

› Simple C-like language

Types: char, int, void, pointers (e.g. char*, int**, …), arrays (e.g. char[10])

Local and global variables

Array variable is a pointer to the first element of the array

Statements and expressions:

Constants, variables, logical and arithmetic expressions, array indexing

If / while / sequencing / blocks / assignment / function calls

Library functions for I/O and memory management:

getchar(), putchar(),gets(), printf() + other typical C functions for I/O – we will just use getint() and putint()

malloc() and free()

10

Example source program

11

HEAP

Compilation: Memory layout

› A compiled program uses memory for 4 purposes:

CODE: contains compiled machine code

DATA: contains global variables

HEAP: contains dynamically allocated program data

STACK: contains the call stack that tracks function

invocations

12

CODE

STACK

DATA

0

MAX

Compilation: Stack activation records

› Call stack is a stack of activation records,

each containing:

Call arguments

Return address

Space for local variables

› NOTE: many real-world compilation details

elided (frame pointer, using registers, …)

13

main RA

main locals

f arguments

f RA

f locals

g arguments

g RA

g locals

main

activation record

f activation record

g activation record

sp

Compilation: malloc() and the heap

› Simplified malloc() implementation:

› Note: many real-world implementation details elided

(supporting free(), supporting virtual memory,…)

14

HEAPSTART

Allocated memory

Free memory

HEAPEND

Compilation: the CODE section

› Code for every function is compiled separately

Prologue: allocates space for activation record

Code for the body

Epilogue: put result in designated register, clear space

for activation record

› We do not show the implementation of I/O

Could be syscall, instruction, memory mapped, …

15

code

for

f()

code

for

g()

code

for

main()

code for

malloc()

rt support

code

Example Compilation

16

sum:

addi sp,sp,-4 // activation record: arg,ra,i,result

sw x10, 3(sp) // save argument in activation record

sw ra, 2(sp) // save return address in act record

jal getint // call getint()

sw x10, 1(sp) // store return value in i

sub x5, x5, x5 // x5 = 0 (no need to store in memory)

loop:

beq x10, x0, end // if (i==0) goto end

add x5, x5, x10 // x5 += i (still in x10)

jal getint // call getint() -> return value in x10

beq x0,x0,loop // unconditional jump to start of loop

end:

lw x6, 3(sp) // load r in x6

sw x5, 0(x6) // r[0] = x5

lw ra, 2(sp) // restore return address

addi sp,sp,4 // remove activation record

jalr ra // return

void sum(int* r) {

int i,result;

i = getint();

result = 0;

while (i != 0) {

result += i;

i = getint();

}

r[0] = result;

}

Interactive attacker

› Models attacks that consist of crafting malicious input and

learning from output of the program

In our system model: attacker gets to see putint() arguments and gets

to choose getint() results

17

Program
Input / Output

Example attack 1: buffer overwrite

18

HEAP

CODE

for main(),

getints(),…

STACK

DATA

(empty)

0

MAX

buffer

data

Many variants exist:

• Data-only attack

• Code corruption attack

• Direct code injection attack

• Code reuse (indirect code injection) attack

Example attack 2: buffer over-read

19

HEAP

CODE

for main(),

…

STACK

DATA

(empty)

0

MAX

buffer

999

These attacks can leak:

• Application secrets (e.g. keys)

• Secrets that enable other attacks (e.g. ASLR)

Other vulnerabilities

› The example attacks exploited spatial memory vulnerabilities

› But other kinds of software bugs can also lead to memory

reads or writes that are not allowed:

Temporal memory vulnerabilities

Uninitialized variables

Variadic function misuse

…

20

Overview of the rest of the talk

› System model and attacker model

Recap of how C-like languages are executed on standard processors

Interactive attacker model

› Memory capabilities for run-time security

› Ownership types for compile-time security

› [The next wave of attacks]

› Conclusions

21

Capability-machines

› Key idea:

Pointers (addresses) are NOT integers.

Pointers are capabilities:

They come with a bound on what you can do with that pointer.

The entire machine is designed to ensure that capabilities are a secure bound on what

you can do

› Capabilities are an old security mechanism, studied both at the machine

code / OS level, as well as on the PL level

We will just discuss the simplest machine-level variant here

22

Capabilities

› A memory capability is a hardware “fat pointer”

› For simplicity, we assume it can be represented within one

word

23

Base End Offset Metadata

Platform model: CPU extensions/modifications

› A CPU with:

Standard registers:

x0 (=0), x1, x2,…

Capability registers:

PCC (program counter capability)

c0 (=spc), c1 (=rac), c2(=gdc), c3, …

Modified and new instructions

Memory access must be through a capability

Jumps must be to a capability

Instructions to compute derived capabilities

These must reduce the authority of the capability

Instructions to inspect capabilities

All instructions check capability constraints

24

Example instruction Semantics

clw x4,50(c5) x4 = M[c5 + 50]

csw x5,30(c4) M[c4+30] = x5

cjalr 10(c5) c1 = PCC+1; PCC = c5 +10

csetbounds

c1,c2,5

c1.base = c2.offset

c1.end = c2.offset + 5

c1.offset = 0

c1.metadata = c2.metadata

cgetbase x5,c3 x5 = c3.base

Platform model: memory extensions

› Every memory word has an associated tag

Set when a capability is stored in that word

Cleared whenever a non-capability value is stored

25

MAX

0

csw c5,30(c4) // store c5 in memory

…

[csw x4,30(c4)] // OPTIONALLY: store an int

// This would clear the tag

…

clw c5,30(c4) // load c5 from memory again

Capabilities are unforgeable

› Guarded manipulation

Instructions that modify a capability can only reduce their authority

Increase base or reduce end

Move offset around between base and end

Reduce permissions

› Tagged memory

Capabilities can be stored in memory and copied around, but are

protected by a tag

26

HEAP

Compilation: Memory layout

› Dedicated processor registers:

spc: stack pointer capability

gdc: global data capability

pcc: program counter capability

malloc() holds a capability to the heap

and hands out sub-capabilities of appropriate size

27

CODE

STACK

DATA

0

MAX

Compilation: malloc() and the heap

› malloc() pseudo-implementation:

28

p1

heap_cap

p2

Example Compilation

29

sum:

cincoffset csp,csp,-4 // activation record: arg,ra,i,result

csw c10, 3(csp) // save argument in activation record

csw cra, 2(csp) // save return address in act record

jal getint // call getint() (rel jump to PCC)

csw x10, 1(sp) // store return value in i

sub x5, x5, x5 // x5 = 0 (no need to store in memory)

loop:

beq x10, x0, end // if (i==o) goto end (rel branch)

add x5, x5, x10 // x5 += i (still in x10)

jal getint // call getint() -> return value in x10

beq x0,x0,loop // unconditional jump to start of loop

end:

clw c6, 3(sp) // load r in c6 (must be cap register!)

csw x5, 0(c6) // r[0] = x5 (store through capability)

clw cra, 2(sp) // restore return address

cincoffset csp,csp,4 // remove activation record

cjalr cra // return

void sum(int* r) {

int i,result;

i = getint();

result = 0;

while (i != 0) {

result += i;

i = getint();

}

r[0] = result;

}

Memory capabilities for safe compilation of C

› Memory capabilities can represent C pointers, and enforce spatial memory safety at run time

Within the interactive attacker model

› This is relatively simple to prove for simplified settings such as the one we considered in this talk

CAVEAT: reading uninitialized memory

› For a recent realistic prototype, see for instance:

David Chisnall, et al. Beyond the PDP-11: Processor support for a memory-safe C abstract machine,

(ASPLOS 2015)

This paper considers many of the challenges involved in bringing this to real-world C

› The main challenge still faced by capability systems is revocation (i.e. efficient implementations of

free())

30

Conclusions

› Memory capabilities are a useful hardware primitive to build secure C compilers

› Hardware-supported capabilities are becoming more mainstream

The CHERI project: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

Arm is working with the CHERI team to bring these ideas into the Arm architecture:

https://community.arm.com/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity

› And we are not even using the full power of capabilities yet

In particular, a capability processor satisfies a monotonicity property:

The set of memory addresses that a program has access to (directly or indirectly), can only shrink over time.

This makes it possible to share a memory address space between distrusting program components

providing strong compartmentalization guarantees

31

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity

Overview of the rest of the talk

› System model and attacker model

Recap of how C-like languages are executed on standard processors

Interactive attacker model

› Memory capabilities for run-time security

› Ownership types for compile-time security

› [The next wave of attacks]

› Conclusions

32

Memory safety

› An important reason why C programs have exploitable

security vulnerabilities is because of unsafe memory

accesses

The program contains a bug (e.g. missing bounds check) such that

the compiled program performs a memory access (read or write) that

an attacker can control

33

Essentially, only 4 ways things can go wrong

› Spatial memory safety errors: a blob of allocated memory is accessed out

of bounds

› Temporal memory safety errors: a blob of memory is accessed after it has

been deallocated

› Pointer forging: creating an invalid pointer value

By invalid casts

By use of uninitialized memory

› Unsafe primitive API functions:

Like C’s printf() function

34

Spatial memory safety

› Examples: indexing an array, indexing a struct, pointer arithmetic

› How could the compiler protect against spatial memory safety errors?

35

Enforcing spatial memory safety

› Through type checking for structs and arrays with statically

known bounds

E.g. Java type system will make sure that you can not access a non-

existing field of an object

› Through run-time bounds checking otherwise

E.g. Java throws ArrayIndexOutOfBoundsException

E.g. “Fat” pointers in C or C++

36

Temporal memory safety

› How long are pointers valid?

This depends on how the pointer is created.

37

A simple example

38

A simple example

Stack Heap

data

0

2

len

cap
*

*

39

A simple example

Stack Heap

data

1

2

len

cap
0

*

40

A simple example

Stack Heap

data

1

2

len

cap
0

*

Output:

0

41

A simple example

Stack Heap

data

1

2

len

cap
10

*

Output:

0

i0

42

A simple example

Stack Heap

data

1

2

len

cap
10

*

Output:

0

10

i0

43

A simple example

Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

i0

10

1

2

3

44

A simple example

Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

10

1

2

3

i0

10

1

2

3

45

A simple example

Stack Heap

data

4

4

len

cap
10

*

Output:

0

10

10

1

2

3

i0

10

1

2

3
Temporal memory safety error

46

Real heap looks more complicated…

47

Enforcing temporal memory safety

› Allocate everything on the heap, and do garbage collection:

Programmer can not do explicit deallocation

I.e. no free()

At regular intervals, the program will be halted and the run-time system will clean up unused memory

Basic idea: check what memory is reachable from the current program state, and deallocate all the rest

Many different strategies to implement this with different pros and cons

› Important disadvantages for systems programming:

Less precise control over memory

Unpredictable timing

48

Enforcing temporal memory safety

› New approach: ownership types and borrowing

› Basic idea:

There is at all times a unique owning pointer to each allocated blob of memory

Memory is deallocated when the owning pointer disappears

Because it goes out of scope

Or because it is overwritten

Or because it was part of a data structure that is being deallocated

› We discuss the implementation of this idea in Rust

49

Memory management in Rust

› Programmer controls:

At what time memory is allocated

And where it is allocated (stack / heap)

› Deallocated when owner goes out of scope

1 1

Stack Heap

x

y

50

No use after free is possible

› There was only a single pointer, and it has gone out of scope

51

Move semantics

› Pointers are not copied but moved

2

Stack Heap

y

52

Move semantics

› Pointers are not copied but moved

2

Stack Heap

x

y

1

53

Move semantics

› Pointers are not copied but moved

MOVED

Stack Heap

x

y

1

54

Move semantics

› Pointers are not copied but moved

Hence: there is always a unique owning pointer

Stack Heap

y

1

55

Pointers move into functions too

› Ownership moves from argument to formal parameter

› So when is the allocated memory freed in the program below?

Stack Heap

x 1

56

Pointers move into functions too

› Ownership moves from argument to formal parameter

› So when is the allocated memory freed in the program below?

MOVED

Stack Heap

x 1

y

57

Pointers move into functions too

› Ownership moves from argument to formal parameter

› So when is the allocated memory freed in the program below?

MOVED

Stack Heap

x

58

Pointers can also move into Boxes and structs

Stack Heap

x 1

59

Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1

y

60

Pointers can also move into Boxes and structs

MOVED

Stack Heap

x 1

MOVEDy

z

61

Moving into a box can extend life

62

Moving into a box can extend life

-r

Stack Heap

63

Moving into a box can extend life

MOVEDx 1

MOVEDy

z

-r

Stack Heap

64

Moving into a box can extend life

1

r

Stack Heap

65

Enforcing unique ownership simplifies the heap

› The heap is a forest (set of trees), with allocated blobs of memory as

nodes, and owning references as arrows.

› Roots of the trees are on the stack:

local variables of Box type

› If a local variable goes out of scope, that tree gets deallocated

We know that there are no other owners, because of uniqueness of ownership

› Uniqueness of ownership is maintained with the move semantics of

pointers

66

Borrowing

› Move semantics is sometimes too limiting / annoying

› Rust supports “borrowing” of references to address this

ERROR

67

Borrowing

Stack Heap

x 1

68

Borrowing

Stack Heap

x

y

1

69

Borrowing

Stack Heap

x

y

1

70

Borrowing rules

› To avoid introducing temporal safety errors, borrowing and ownership follow

some rules:

The lifetime of a borrow should always be included in the lifetime of the owner from

which it is borrowed

Otherwise, if the owner dies, the borrowed reference would be dangling

71

Borrowing should also forbid mutation

Stack Heap

data 1

1

1

len

cap

72

Borrowing should also forbid mutation

Stack Heap

data 1

1

1

len

cap

first

73

Borrowing should also forbid mutation

Stack Heap

data 1

2

2

len

cap

first
1

2

74

Borrowing should also forbid mutation

Stack Heap

data 1

2

2

len

cap

first
1

2

75

Borrowing rules

› Rust supports borrowing:

Either: an arbitrary number of immutable references

Or: a single mutable reference

› To ensure safety, Rust ensures:

Modification through the owner is disallowed while borrows are

outstanding

Lifetimes of borrowed references are always strictly included in the

lifetime of the owner

76

Summary: Ownership and borrowing

› Together these concepts:

Can guarantee temporal memory safety statically

By ruling out simultaneous aliasing + mutation

Allow relatively flexible pointer manipulating programs

› Many advantages:

No need for a run-time (no garbage collection)

Also helps in avoiding data races (concurrency errors)

› Some disadvantages:

Non-trivial to use

Not as flexible as C

77

The Rust programming language

› Is one of the fastest growing languages at the moment

› Since Firefox 48 (August 2016), there is Rust code in Firefox

› The language has many other interesting features that we did not discuss

Pattern matching

Traits

Generics

…

› See:

https://www.rust-lang.org/

78

Comparison

› Java/C#/JavaScript/…

Runtime = virtual machine + JIT compiler + GC + …

Garbage collection can induce substantial latency

“Stop-the-world”

› Go

Runtime = GC

Low-latency garbage collection

Focus on GC algorithms that can keep the program running

› Rust

“Runtime” = just a set of libraries

79

Overview of the rest of the talk

› System model and attacker model

Recap of how C-like languages are executed on standard processors

Interactive attacker model

› Memory capabilities for run-time security

› Ownership types for compile-time security

› [The next wave of attacks]

› Conclusions

80

Introduction

› In 2018, micro-architectural attacks have come of age:

Meltdown breaks user/kernel isolation

Spectre breaks several isolation boundaries that software security fundamentally relies

on

Foreshadow breaks SGX enclave isolation

› Hardware and system software vendors are scrambling to address these

attacks

81

References:

Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security Symposium 2018

Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order

Execution, USENIX Security Symposium 2018

Attacker model: Shared platform attacker

› The attacker can run code on the same platform where victim code is running.

› The objective of the attacker is to learn more about the victim than what one can learn

through intended communication interfaces.

82

Platform

Victim

Program

Attacker

Program

Shared Resources

controls

Micro-architectural attacks

› The attacker learns information by manipulating and observing the

victim program’s use of shared platform resources such as the

cache, the branch predictor, …

83

Platform

Victim

Program

Attacker

Program

Shared Resources

Side-channels: a simple example of a cache-attack

84

CPU

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

-

-

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

85

CPU

0x12

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

0

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

86

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

87

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

…

if secret {

load address 4

}

else {

load address 5

}

…

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

Finally, attacker measures duration of an access to

address 0

Cache attacks

› Cache-based side-channel attacks have been understood for

quite a while

› Countermeasures exist:

At the hardware level, e.g. cache partitioning

At the software level, e.g. the crypto constant time model

88

Qian Ge, Yuval Yarom, David Cock, Gernot Heiser: A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware. J. Cryptographic Engineering (2018)

Speculative execution attacks

› Speculative execution attacks amplify the impact of existing side-

channels by giving the attacker control over the sending side of the

channel too

› The key observations are:

Processors are pipelined and sometimes execute instructions speculatively

No architectural effects are visible until instruction is committed

Speculatively executed instructions also impact the micro-architectural state

The attacker can influence what instructions get executed speculatively

89

Speculative execution

› All major processors support

speculative execution

Processor implementations are pipelined

To keep the hardware busy, instructions

are executed out-of-order and

speculatively

No visible architectural effects of

speculatively executed instructions – but

there are persistent micro-architectural

effects

90

A simple example of a speculative execution attack

91

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

92

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

Branch predictor

learns that usually

then branch is

taken

A simple example of a speculative execution attack

93

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

94

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

95

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

96

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

CPU speculatively

executes the then

branch

A simple example of a speculative execution attack

97

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

98

cache

attacker memory

3

victim memory

array a

array b

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(size);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

void process(int i) {

int y;

if (i < size) y = b[pub[i]];

}

Speculative execution attacks

› This was a simplified Spectre Variant 1 attack

Many other variants exist

Meltdown/Foreshadow style attacks are similar but rely on the micro-architectural effects of out-of-

order code execution that leads to an access control exception

› Note the devastating nature of this kind of attack

on any kind of software-enforced confidentiality

on any kind of hardware-enforced confidentiality where hardware resources are shared over

protection boundaries

› Meltdown and Foreshadow are related attacks that exploit the fact that a processor

may do speculative execution beyond a faulting instruction

99

Overview of the rest of the talk

› System model and attacker model

Recap of how C-like languages are executed on standard processors

Interactive attacker model

› Memory capabilities for run-time security

› Ownership types for compile-time security

› [The next wave of attacks]

› Conclusions

100

Conclusions

› System software plays a key role in ICT security

Vulnerabilities in system software impact all applications on the system

The boundaries of system software are fuzzy: your application likely relies

on system software libraries

› System software is a clear example of the typical attacker-

defender race

We are currently witnessing the transition to a new wave of attacks …

… as well as significant progress with closing the previous wave

101

