New trends In system software
security

Secappdev 2019
Frank Piessens, February 18, 2019

EEEEIDistriN=t

Introduction
What is ICT security?

> The field of ICT security addresses the problem of

» Maintaining desirable properties of ICT systems in the presence of
intelligent adversaries trying to break these properties

» In practice:
» “Desirable properties” are hard to nail down

» But we recognize security failures when we see them

» Viruses, worms, defacements, data leaks, ransomware, DDOS, jailbreaks, ...

> R DistriN=t

An important underlying cause: insecure software

» Software implementation vulnerability =

» A defect in software code (a “bug”) that can be exploited by an attacker to
break some security objective of the software

> Around 100.000 such vulnerabilities listed in the Common
Vulnerabilities and Exposures (CVE) list

» Buffer overflows, SQL injection, cross-site scripting, race conditions, side-
channel vulnerabilities, information leaks, incomplete access mediation,
cross-site scripting, double free, ...

3 R DistriN=t

DIRTY GOW

r

d 4 4
d 4 4

r
-

#cloudbleed -) EEE DistriN=t

Vulnerabllities in system software

A

System software (operating systems, low-level libraries, servers, browsers,
...) is often programmed in performance-friendly, “close-to-hardware”
languages like C / C++

> These languages are infamous for the broad class of memory management
vulnerabilities

> While many mitigation techniques are deployed, these vulnerabilities still
represent a major threat

> Moreover, a vulnerability in system software affects the security of all
applications running on the system

5 R DistriN=t

Purpose of this lecture:

> Provide insight in a number of new trends in system software
security
» New hardware architectures for the safe execution of C
» Capability machines
» New language designs for systems programming, safe by design
» Rust ownership types

» [If time: new attacks]
» [Spectre style attacks]

6 R DistriN=t

Overview of the rest of the talk

Memory capabilities for run-time security

A

Ownership types for compile-time security

v

v

[The next wave of attacks]

Conclusions

v

7 = DistriN=t

System model / attacker model / security objective

» Arigorous study of security requires:
» Asystem model: a model of the system under attack that is sufficiently
detailed to explain the attacks one cares about

» Qur systems are essentially C programs, but we need to model how
compilation works to explain relevant attacks

» An attacker model: a precise description of what an attacker can and
cannot do

» A security objective: either a description of system properties to be
maintained, or of attacks/threats to be avoided

8 R DistriN=t

Platform model

> Target platform consists of:
» A memory of MAX words (addresses 0 .. MAX-1)

» Making abstraction of issues like word-size,
padding, ...
» A CPU with
» Registers:
» PC, x0 (=0), x1(=ra), x2(=sp), x3(=gp), x4,...
» Typical RISC-like instructions
»» - Arithmetic/logical/shift
»» Memory access
»» - Conditional/unconditional branch

» |nstructions can be encoded as words

> Detalls vary across platforms

Example instruction Semantics
add x5,x6,x7 X5 = x6 + X7
addi x4,x5,10 x4 =x5 + 10

lw x4,50 (x5)

x4 = M[x5 + 50]

sw x5,30(x4)

M[x4+30] = x5

beq x5,x6,12

if x5==x6 goto PC+12

jal 12

x1 =PC+1; goto PC+12

jalr 10 (x5)

x1 = PC+1; goto x5+10

I DistriN=t

Source code model

> Simple C-like language
» Types: char, int, void, pointers (e.g. char*, int**, ...), arrays (e.g. char[10])
» Local and global variables
» Array variable is a pointer to the first element of the array
» Statements and expressions:
» Constants, variables, logical and arithmetic expressions, array indexing

» If [while / sequencing / blocks / assignment / function calls

» Library functions for I/O and memory management:
»» getchar(), putchar(),gets(), printf() + other typical C functions for I/0O — we will just use getint() and putint()
»» malloc() and free()

10 R DistriN=t

Example source program

vold sum(int®* r) {
int i,result;
i = getint(); result = 8;
while (i != @) {
result += 1i;
i = getint();
h
r[@] = result;
}

void main() {
int* result = malloc(1l);
sum({result);
putint({result[8]);

¥

11

= DistriN=t

Compilation: Memory layout MiAX

» A compiled program uses memory for 4 purposes:

» CODE: contains compiled machine code

» DATA: contains global variables

» HEAP: contains dynamically allocated program data
» STACK: contains the call stack that tracks function -

invocations

0

12 I DistriN=t

Complilation: Stack activation records man

activation record

» Call stack is a stack of activation records, factivation record -
each containing: L

» Call arguments g activation record —

» Return address “ .

» Space for local variables

> NOTE: many real-world compilation details

elided (frame pointer, using registers, ...)

13 = DistriN=t

Compilation: malloc() and the heap HEAPEND

» Simplified malloc() implementation: Free memory —

int* malloc(int n) {
int* result;
it ((((int *) HEAPSTART[@]) + n) »= HEAPEND) return (int *) @;
result = (int *) HEAPSTART[@];
HEAPSTART[®] = (int) (result + n);
return result;

¥

\f

Allocated memory —
> Note: many real-world implementation details elided
(supporting free(), supporting virtual memory,...)

—

HEAPSTART

14 = DistriN=t

Compilation: the CODE section

» Code for every function is compiled separately

» Prologue: allocates space for activation record
» Code for the body

» Epilogue: put result in designated register, clear space
for activation record

> We do not show the implementation of 1/O

» Could be syscall, instruction, memory mapped, ...

15 = DistriN=t

Example Compilation

sum:
. - addi sp,sp,-4 // activation record: arg,ra,i,result
V0|d Sum(|nt r) { sw x10, 3(sp) // save argument in activation record
: : . sw ra, 2(s save return address in act record
int i,result; (sp) /Y
]] jal getint // call getint()
| = getlnt(), sw x10, 1(sp) // store return value in i

sub x5, x5, x5 // x5 = 0 (no need to store in memory)

result = O;
while (i '=0) { Loop:

beq x10, x0, end // if (i==0) goto end

result +=i; add x5, x5, x10 // x5 += i (still in x10)
. . . jal getint // call getint() -> return value in x10
I = getlnt(), beq x0,x0,loop // unconditional jump to start of loop
} end:
r[O] = result; 1w x6, 3(sp) // load r in x6
sw x5, 0(x6) // r[0] = x5
} lw ra, 2(sp) // restore return address
addi sp,sp,4 // remove activation record
jalr ra // return

16 R DistriN=t

Interactive attacker

» Models attacks that consist of crafting malicious input and
learning from output of the program

» In our system model: attacker gets to see putint() arguments and gets

to choose getint() results

@ ey

17 R DistriN=t

Example attack 1: buffer overwrite

void main() {
int ij
int* buffer = malloc(18);
int* data = malloc(1);
data[e] = 101; // high integrity data
getints(buffer);
i=e;

while (i < 18) {
putint(buffer[i]); i = i + 13 data >
}
}

void getints(int* a) {

int i,n;

1=9] Many variants exist:

n = getint(); - Data-only attack CODE

while (n I=8) { « Code corruption attack for main()
a[i] = n; - Direct code injection attack : ’
i=1+1; » Code reuse (indirect code injection) attack getints(),...

n = getint();

} } 18 = DistriN=t

Example attack 2: buffer over-read MAX

void main() {
int 1i;
int SECRET = 999; // secret data
int* buffer = malloc(1@);
buffer[e] = 1; buffer[1] = 2; ... // public data in buffer

1 = getint();
putint(buffer[1i]);

}

These attacks can leak:
» Application secrets (e.g. keys) CODE
» Secrets that enable other attacks (e.g. ASLR) for main()

19 = DistriN=t

Other vulnerabilities

» The example attacks exploited spatial memory vulnerabilities

» But other kinds of software bugs can also lead to memory
reads or writes that are not allowed:

» Temporal memory vulnerabilities
» Uninitialized variables

» Variadic function misuse

)) - = w

20 R DistriN=t

Overview of the rest of the talk

» System model and attacker model
» Recap of how C-like languages are executed on standard processors

» |nteractive attacker model

> Ownership types for compile-time security
> [The next wave of attacks]

» Conclusions

21 = DistriN=t

Capability-machines

» Key idea:
» Pointers (addresses) are NOT integers.
» Pointers are capabilities:

» They come with a bound on what you can do with that pointer.

» The entire machine is designed to ensure that capabilities are a secure bound on what
you can do

> Capabilities are an old security mechanism, studied both at the machine
code / OS level, as well as on the PL level

» We will just discuss the simplest machine-level variant here

22 R DistriN=t

Capabilities

>

>

A memory capability is a hardware “fat pointer”

For simplicity, we assume it can be represented within one

word

\

Base

End

Offset

Metadata

23

»
» ~——

I DistriN=t

Platform model: CPU extensions/modifications

> A CPU with:
» Standard registers: Example instruction | Semantics
» X0 (=0), x1, x2,...
» Capability registers: clw x4,50(c5) x4 = M[c5 + 50]
» PCC (program counter capability) csw x5,30(c4) M[c4+30] = x5
» ¢0 (=spc), ¢l (=rac), c2(=gdc), c3, ... cjalr 10 (c5) ¢l = PCC+1: PCC = ¢5 +10
» Modified and new instructions
- csetbounds cl.base = c2.offset
» Memory access must be through a capability cl.c2.5 cl.end = c2.offset + 5
»Jumps must be to a capability cl:offset — O
» - Instructions to compute derived capabilities cl.metadata = c2.metadata
»» These must reduce the authority of the capability
cgetbase x5,c3 x5 = c3.base

» Instructions to inspect capabilities

)

~

» All instructions check capability constraints

24 R DistriN=t

Platform model: memory extensions VA X

» Every memory word has an associated tag X

» Set when a capability is stored in that word

» Cleared whenever a non-capability value is stored X

csw c5,30(c4) // store c5 in memory

[csw x4,30(c4)] // OPTIONALLY: store an int
// This would clear the tag

clw c5,30(c4) // load c5 from memory again

0

25 R DistriN=t

Capabilities are unforgeable

» Guarded manipulation

» Instructions that modify a capability can only reduce their authority
» |ncrease base or reduce end
» Move offset around between base and end

» Reduce permissions

» Tagged memory

» Capabilities can be stored in memory and copied around, but are
protected by a tag

26 R DistriN=t

Compilation: Memory layout MpX

» Dedicated processor registers:
» Spc: stack pointer capability

» gdc: global data capability

» pcc: program counter capability

» malloc() holds a capability to the heap
and hands out sub-capabilities of appropriate size

0

27 = DistriN=t

Compilation: malloc() and the heap

> malloc() pseudo-implementation:

int*® heap cap;
int*® mmalloc(int n) { .
int* result; Sap_cap

—

if (heap cap.offset + n) »= heap cap.end) return (int *) @;
result = csetbounds(heap cap, n); 02
heap cap.offset = heap cap.offset + n; g
return result;
h
pl

28 = DistriN=t

Example Compilation

sum:
) . cincoffset csp,csp,-4 // activation record: arg,ra,i,result
V0|d Sum(|nt r) { csw cl0, 3(csp) // save argument in activation record
: : . csw cra, 2(cs // save return address in act record
int i,result; el
]] jal getint // call getint() (rel jump to PCC)
| = getlnt(), csw x10, 1(sp) // store return value in i
AL sub x5, x5, x5 // x5 = 0 (no need to store in memory)
result = 0;
I = loop:
Whlle (I ’ O) { beqg x10, x0, end // if (i==0) goto end (rel branch)
result +=i; add x5, x5, x10 // x5 += i (still in x10)
. . . jal getint // call getint() -> return value in x10
I = getlnt(), beq x0,x0,loop // unconditional jump to start of loop
} end:
I’[O] — reSUIt; clw c6, 3(sp) // load r in c6 (must be cap register!)
csw x5, 0(cé6) // r[0] = x5 (store through capability)
} clw cra, 2(sp) // restore return address
cincoffset csp,csp,4 // remove activation record
cjalr cra // return

29 R DistriN=t

Memory capabillities for safe compilation of C

> Memory capabilities can represent C pointers, and enforce spatial memory safety at run time
» Within the interactive attacker model

> This is relatively simple to prove for simplified settings such as the one we considered in this talk
» CAVEAT: reading uninitialized memory

> For a recent realistic prototype, see for instance:

» David Chisnall, et al. Beyond the PDP-11: Processor support for a memory-safe C abstract machine,
(ASPLOS 2015)

» This paper considers many of the challenges involved in bringing this to real-world C

> The main challenge still faced by capability systems is revocation (i.e. efficient implementations of
free())

30 R DistriN=t

Conclusions

> Memory capabilities are a useful hardware primitive to build secure C compilers

> Hardware-supported capabilities are becoming more mainstream
» The CHERI project: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
» Arm is working with the CHERI team to bring these ideas into the Arm architecture:
» https://community.arm.com/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
> And we are not even using the full power of capabilities yet

» In particular, a capability processor satisfies a monotonicity property:
» The set of memory addresses that a program has access to (directly or indirectly), can only shrink over time.
» This makes it possible to share a memory address space between distrusting program components
providing strong compartmentalization guarantees

31 R DistriN=t

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://community.arm.com/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity

Overview of the rest of the talk

» System model and attacker model
» Recap of how C-like languages are executed on standard processors

» |nteractive attacker model

> Memory capabilities for run-time security

» [The next wave of attacks]

» Conclusions

32 = DistriN=t

Memory safety

> An important reason why C programs have exploitable
security vulnerabilities is because of unsafe memory
accesses

» The program contains a bug (e.g. missing bounds check) such that
the compiled program performs a memory access (read or write) that

an attacker can control

33 R DistriN=t

Essentially, only 4 ways things can go wrong

> Spatial memory safety errors: a blob of allocated memory is accessed out
of bounds

> Temporal memory safety errors: a blob of memory is accessed after it has
been deallocated

> Pointer forging: creating an invalid pointer value

» By invalid casts
» By use of uninitialized memory

> Unsafe primitive API functions:
» Like C’s printf() function

34 R DistriN=t

Spatial memory safety

> Examples: indexing an array, indexing a struct, pointer arithmetic

void fi(int a[]) { StPuEEthF
al[5] = 10; { .

) [5] H int y; };

void f2(int *a) { Ve FB(ftgg?t 2Pt
*(a+5) = 1e; } P ’

}

> How could the compiler protect against spatial memory safety errors?

35 R DistriN=t

Enforcing spatial memory safety

» Through type checking for structs and arrays with statically
known bounds

» E.g. Java type system will make sure that you can not access a non-
existing field of an object

> Through run-time bounds checking otherwise

» E.g. Java throws ArraylndexOutOfBoundsException

» E.g. “Fat” pointers in C or C++

36 R DistriN=t

Temporal memory safety

> How long are pointers valid?
This depends on how the pointer is created.

int c;

int* f(int x) {

int i;

int *pl = &c;

int #*p2 = malloc(sizeof(int));
int *p3 = &x;

int *p4 = &i;

return pl; // or p2? or p3? or p4?

37 = DistriN=t

A simple example

typedef struct { void printvec(vec v) {
int len; int 1i;
int cap; for (int i =8; i < v.len; i++) {
int* data; printf("%d\n", v.data[i]);
} vec;
vec newvec() { }
vec v;
v.len = o; int* get(vec* v, int i) {
v.cap = 2; return v->data + 1i;
v.data = malloc(2*sizeof(int)); }
return v;

}

void push(vec* v, int 1) {
it (v->len »>= v-»>cap) {

void main() {
vec v = newvec();

* int i;
v->cap = 25 J) _ push(&v,0);
int *new = malloc(vi->cap * sizeof(int)); printvec(v);

memcpy (new,v->data, v->len * sizeof(int)); int* ie = get(&v,0); *ie = 10;
free(v->data); T ’

printvec(v);
v->data = new; for (1 = 1; i < 4; i++) push(&v,i);
] printvec(v);
v->datalv->len++] = i; *ig = 20;
} printvec(v);

38 = DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@);
printvec(v);
int* i@ = get(&v,0); *i0 = 10;
printvec(v);
for (i = 1; i < 4; i++) push(&v,i);
printvec(v);
*ie = 20;
printvec(v);

39

len
cap
data

Stack

Heap

= DistriN=t

A simple example

void main() {

=

vec v = newvec();

int i;

push(&v,@);

printvec(v);

int* i@ = get(&v,0); *i0 = 10;
printvec(v);

for (i = 1; i < 4; i++) push(&v,i);
printvec(v);

*ie = 20;

printvec(v);

40

len
cap
data

Stack

Heap

= DistriN=t

A simple

example

void main() {

vec v = newvec();
int i;
push(&v,@);

printvec(v);
int* i@ = get(&v,0); *i0 = 10;

}

printvec(v);

for (i = 1; i < 4; i++) push(&v,i);
printvec(v);

*ip = 20;

printvec(v);

Output:
0

41

len
cap
data

Stack

Heap

= DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@);
printvec(v);

int* i@ = get(&v,0); *i0 = 10;
» printvec(v);

for (i = 1; i < 4; i++) push(&v,i);

printvec(v);

*ip = 20;

printvec(v);

}

Output:
0

42

Stack Heap
len 1
cap 2
data 10

= DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@);
printvec(v);
int* i@ = get(&v,0); *i0 = 10;
printvec(v);

- for (i = 1; 1 < 4; i++) push(&v,i);

printvec(v);
*ie = 20;
printvec(v);

}

Output:
0
10

43

Stack Heap
len 1
cap 2
data 10

= DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@);
printvec(v);
int* i@ = get(&v,0); *i0 = 10;
printvec(v);
for (i = 1; i < 4; i++) push(&v,i);
» printvec(v);
*ie = 20;
printvec(v);

}

Output:
0
10

44

Stack
len 4
cap 4
data
i0

Heap

10

N

= DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@);
printvec(v);
int* i@ = get(&v,0); *i0 = 10;
printvec(v);
for (i = 1; i < 4; i++) push(&v,i);

» printvec(v);
*ip = 20;

printvec(v);

Output:
0

10

10

1

2

3

45

Stack
len 4
cap 4
data
i0

Heap

10

N

= DistriN=t

A simple example

void main() {
vec v = newvec();
int i;
push(&v,@); len
printvec(v); cap
int* i@ = get(&v,0); *i0 = 10;
printvec(v); data
for (i = 1; i < 4; i++) push(&v,i);
printvec(v); i0

- *ig = 20;
printvec(v);
¥

Output:

0 Temporal memory safety error
10

10

1

2

3

46

Heap

10

N

= DistriN=t

Real heap looks more complicated...

= DistriN=t

Enforcing temporal memory safety

> Allocate everything on the heap, and do garbage collection:
» Programmer can not do explicit deallocation
» |.e. no free()
» At regular intervals, the program will be halted and the run-time system will clean up unused memory
» Basic idea: check what memory is reachable from the current program state, and deallocate all the rest
» Many different strategies to implement this with different pros and cons
> Important disadvantages for systems programming:
» Less precise control over memory

» Unpredictable timing

48 R DistriN=t

Enforcing temporal memory safety

> New approach: ownership types and borrowing

» Basic idea:
» There is at all times a unique owning pointer to each allocated blob of memory

» Memory is deallocated when the owning pointer disappears

» Because it goes out of scope
» Or because it is overwritten

» Or because it was part of a data structure that is being deallocated

> We discuss the implementation of this idea in Rust

49 R DistriN=t

Memory management in Rust

> Programmer controls:
» At what time memory is allocated

» And where it is allocated (stack / heap)

> Deallocated when owner goes out of scope

Stack Heap
fn main() { X 1 _r| 1 |
let x = 13 // allocated on the stack y
let y = Box::new(1l); // allocated on the heap
J;

50 R DistriN=t

No use after free Is possible

> There was only a single pointer, and it has gone out of scope

fn main() {

{

ek ot = Hanc = sl H0HE T 2l

println! ("x = {}", *x)3}

b // free x
// ERROR: println!("x {}", #*x):
}

51 R DistriN=t

Move semantics

> Pointers are not copied but moved

fn main() {
Stack Heap

vl = 2 |

»let mut y = Box::inew(2)3}
{

let x = Box::new(1)3}
println!("x = {}", *x)3

y = X3
// ERROR: println!("x {}", #x);
}

printlnt("y = {}", *y)3;
)

52 = DistriN=t

Move semantics

> Pointers are not copied but moved

fn main() {
let mut y = Box::new(2)3}
{

let x = Box::new(1)}
println!("x = {}", *x)3

=
// ERROR: println!("x = {}",
}

println!("y = {}", *y)}
Jj

Stack Heap
X)]
y 2

AX) N

53 EEEDistriN=t

Move semantics
> Pointers are not copied but moved

fn main() {
let mut y = Box::inew(2)s
{

let x = Box::new(1l)3
println! ("x = {}", *x)3

y = X3
// ERROR: println!("x = {}"
}

println!("y = {}", *y)3
5

54

Stack

MOVED

Heap

= DistriN=t

Move semantics

> Pointers are not copied but moved

» Hence: there is always a unigue owning pointer

fn main() {

let mut y = Box::new(2)3}

{
let x = Box::new(1)3}
println!("x = {}", *x)3

y = X3
// ERROR: println!("x = {}", #*x);
}
B, intlnt(y = (37, #)3
1;

95

R DistriN=t

Pointers move into functions too

> Ownership moves from argument to formal parameter

> So when is the allocated memory freed in the program below?

fn main() {
let x = Box::inew(1)s
» println! ("x = {}", *x)3
f(x)3
// ERROR: println!("x

}

fn f(y : Box<i32>) {
printlnt("y = {}", *y)j
}

56

Stack Heap

x> 1]

I DistriN=t

Pointers move into functions too

> Ownership moves from argument to formal parameter

> So when is the allocated memory freed in the program below?

fn main() {
let x = Box::inew(1)s Stack Heap
println! ("x = {}", *x)3
f(x)3
'/ ERROR: println!("x {}", #*x);
¥

fn f(y : Box<i32>) {
=) printlni("y = {}", *y);

}

57 R DistriN=t

Pointers move into functions too

> Ownership moves from argument to formal parameter

> So when is the allocated memory freed in the program below?

fn main() {
let x = Box::inew(1)s
println! ("x = {}", *x)3
f(x)3
» // ERROR: println!("x
¥

fn f(y : Box<i32>) {
printlnt("y = {}", *y)j
}

58

Stack Heap

X | MOVED

I DistriN=t

Pointers can also move into Boxes and structs

fn main() { Stack Heap
» let mut x = Box::new(1);3 x|]
let mut y = Box::new(x)s;
dlet st = = Bex S nmew(yls
println!("val:{}"4*x*xz)}

50 = DistriN=t

Pointers can also move into Boxes and structs

Heap

fn main() { Stack
let mut x = Box::new(1l)s X| MOVED
» let mut y = Box::new(x); y

let mut z = Box::new(y)}
println! ("val:{}"x**z);

60

= DistriN=t

Pointers can also move into Boxes and structs

Heap

fn main() { Stack
let mut x = Box::new(1)3} X| MOVED
let mut y = Box::new(x)s; y| MOVED
let mut z = Box::new(y); 7
println!("val:{}"4*x*xz)}

+

61

= DistriN=t

Moving into a box can extend life

fn main() {

» let r = ()

printlnl ("Val:{}", #**%r);
¥

fn () —> Box<Box<Box<i32>>> {

let x = Box::inew(l):
let yv = Box::inew(x):
let z = Box::new(y):

println! ("vVal:{}", **%z):
return z;

62 = DistriN=t

Moving into a box can extend life

fn main() { Stack Heap

let r = £(); =

prantln! ("Val:{}", **%r):

H
» fn () —> Box<Box<Box<i32>>> {
let x Box::inew(l);
let yv = Box::inew(x):
let = Box: inew(y):
println! ("vVal:{}", **%z):
return z;

63 = DistriN=t

Moving into a box can extend life

fn main() { Stack Heap
let r = () r :
printlni("Val:{}", #**xr); X | MOVED 1
H y | Movep
V4

fn f() -> Box<Box<Box<i32>>> {
let x = Box:inew(l);
» let y = Box:inew(x);
let z = Box::inew(y);
println! ("vVal:{}", **%z):
return z;

64 = DistriN=t

Moving into a box can extend life

fn main() { Stack Heap

let r = f();
» println!("Val:{}", **xr): 1
T

fn () —> Box<Box<Box<i32»>> {
let = Box:inew(l):
let v = Box:inew(x):
let = Box: inew(y):
println!("vVal:{}", **xz):
return z;

65 = DistriN=t

Enforcing unique ownership simplifies the heap

> The heap is a forest (set of trees), with allocated blobs of memory as
nodes, and owning references as arrows.

» Roots of the trees are on the stack:
» local variables of Box type

» If a local variable goes out of scope, that tree gets deallocated

» We know that there are no other owners, because of uniqueness of ownership

> Uniqueness of ownership is maintained with the move semantics of
pointers

66 R DistriN=t

Borrowing

> Move semantics is sometimes too limiting / annoying

fn main() {
let mut x = Box::new(1);
print(x)s;
*X = 23 4mm ERROR
print(x)s;

I

Fn pEabEfy- EBEpuciasag
println! ("Value:{}", *y);

}

> Rust supports “borrowing” of references to address this

67 R DistriN=t

Borrowing

fn main() {
let mut x = Box::new(1)3}
print (&x) 3

xx = 23 Stack Heap
print(&x)3; x|
}

fn print(y: &Box<i32>) {
println! ("value: {}", **xy)3j
}

68 = DistriN=t

Borrowing

fn main() {
let mut x = Box::new(1)3}
print (&x) 3

*x = 23 Stack Heap
print (&) I e
} A

fn print(y: &Box<i32>) { I:l—_l
printlnl("value: {}", *xy); y
¥

69 EEEDistriN=t

Borrowing

fn main() {
let mut x = Box::new(1)3
print(& *x)3;
X = 23 Stack Heap

print (& =03 {1]
}

in prEint(ys &322 §

println! ("value:{}", *y)j; YI:I

}

70 = DistriN=t

Borrowing rules

> To avoid introducing temporal safety errors, borrowing and ownership follow
some rules:

» The lifetime of a borrow should always be included in the lifetime of the owner from
which it is borrowed

» Otherwise, if the owner dies, the borrowed reference would be dangling

fn main() {
let mut x = Box::new(1l);
let mut y = &x3
{
let mut z = Box::new(2);
y = &z3 6:9: 6:10 error: "z does not live long enough
} 6 y = &z;
s A

71 R DistriN=t

Borrowing should also forbid mutation

Stack Heap
data
fn main() { len 1
let mut vec = Vec::inew(); cap 1

vec.push(1)3

let first = &vec[0]}
// ERROR: vec.push(2);
println! ("{}", *first)s
}

72 = DistriN=t

Borrowing should also forbid mutation

fn main() {

let mut vec = Vec::inew();
vec.push(1)3

let first = &vec[0]}

// ERROR: vec.push(2);
println! ("{}", *first)s

}

73 = DistriN=t

Borrowing should also forbid mutation

fn main() {

let mut vec = Vec::inew();
vec.push(1)3

let first = &vec[0]}

// ERROR: vec.push(2);
println! ("{}", *first)s

}

74

data
len
cap

first

Stack

Heap

= DistriN=t

Borrowing should also forbid mutation

fn main() {

let mut vec = Vec::inew();
vec.push(1)3

let first = &vec[0]}

// ERROR: vec.push(2);
println! ("{}", *first)s

}

75

data
len
cap

first

Stack

Heap

= DistriN=t

Borrowing rules

> Rust supports borrowing:
» Either: an arbitrary number of immutable references

» Or: a single mutable reference

» To ensure safety, Rust ensures:

» Modification through the owner is disallowed while borrows are
outstanding

» Lifetimes of borrowed references are always strictly included in the
lifetime of the owner

76 R DistriN=t

Summary: Ownership and borrowing

> Together these concepts:

» Can guarantee temporal memory safety statically

» By ruling out simultaneous aliasing + mutation

» Allow relatively flexible pointer manipulating programs

> Many advantages:
» No need for a run-time (no garbage collection)
» Also helps in avoiding data races (concurrency errors)

> Some disadvantages:
» Non-trivial to use

» Not as flexible as C

77 R DistriN=t

The Rust programming language

» Is one of the fastest growing languages at the moment
> Since Firefox 48 (August 2016), there is Rust code in Firefox

> The language has many other interesting features that we did not discuss

» Pattern matching
» Traits

» Generics

)) L]

y See:

» https://www.rust-lang.org/

78 R DistriN=t

Comparison

> Java/C#/JavaScript/...

» Runtime = virtual machine + JIT compiler + GC + ...
» Garbage collection can induce substantial latency
m “Stop-the-world”

» GO
» Runtime = GC
» Low-latency garbage collection
» Focus on GC algorithms that can keep the program running
» Rust

» “Runtime” = just a set of libraries

79 R DistriN=t

Overview of the rest of the talk

» System model and attacker model
» Recap of how C-like languages are executed on standard processors

» Interactive attacker model
> Memory capabilities for run-time security

> Ownership types for compile-time security

» Conclusions

80 = DistriN=t

Introduction ﬁf/ @’

» In 2018, micro-architectural attacks have come of age:

» Meltdown breaks user/kernel isolation

» Spectre breaks several isolation boundaries that software security fundamentally relies
on

» Foreshadow breaks SGX enclave isolation

> Hardware and system software vendors are scrambling to address these
attacks

References:
Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security Symposium 2018
Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order

Execution, USENIX Security Symposium 2018

81 R DistriN=t

Attacker model: Shared platform attacker

> The attacker can run code on the same platform where victim code is running.

> The objective of the attacker is to learn more about the victim than what one can learn
through intended communication interfaces.

Attacker Victim
Program Program

\ AL/

Shared Resources

Platform

82 = DistriN=t

Micro-architectural attacks

» The attacker learns information by manipulating and observing the
victim program’s use of shared platform resources such as the
cache, the branch predictor, ...

Attacker Victim
Program Program

/.

Shared Resources

Platform

83 = DistriN=t

Side-channels: a simple example of a cache-attack

>

Attacker Victim
Program Program

/.

Shared Resources

Platform

The shared resources between attacker and victim

program include a direct-mapped cache

CPU

84

if secret {

load address 4
}
else {

load address 5
}

main memory

cache

Attacker
Memory

Victim
Memory

e LJistriN=t

>

Side-channels: a simple example of a cache-attack

Attacker
Program

The shared resources between attacker and victim

program include a direct-mapped cache

»

First the attacker program runs and occupies the first two

cache lines

Victim
Program

/.

Shared Resources

Platform

CPU

85

if secret {
load address 4
}

else {
load address 5

main memory

— Attacker
Memory

— Victim
Memory

KU LEUVEN D | g

triN=t

Side-channels: a simple example of a cache-attack

- if secret {
Attacker Victim load address 4

Program Program }

else {
load address 5

Shared Resources J

Platform

main memory

> The shared resources between attacker and victim
program include a direct-mapped cache — Attacker
, _ _ 4 OEC Memor
» First the attacker program runs and occupies the first two 1 y
cache lines CPU =
» Next the victim program runs and performs secret-
dependent memory accesses — Victim
Memory
86 KU LEUVEN DIE:tFIN:t

Side-channels: a simple example of a cache-attack

Attacker
Program

> The shared resources between attacker and victim
program include a direct-mapped cache

» First the attacker program runs and occupies the first two
cache lines

» Next the victim program runs and performs secret-
dependent memory accesses

» Finally, attacker measures duration of an access to
address 0

Victim
Program

/.

Shared Resources

Platform

CPU

87

if secret {

load address 4
}
else {

load address 5
}

main memory

— Attacker
Memory

— Victim
Memory

KU LEUVEN D | g

triN=t

Cache attacks

y Cache-based side-channel attacks have been understood for

guite a while

» Countermeasures exist:
» At the hardware level, e.g. cache partitioning

» At the software level, e.g. the crypto constant time model

Qian Ge, Yuval Yarom, David Cock, Gernot Heiser: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptographic Engineering (2018)

88 R DistriN=t

Speculative execution attacks

» Speculative execution attacks amplify the impact of existing side-
channels by giving the attacker control over the sending side of the
channel too

> The key observations are:

» Processors are pipelined and sometimes execute instructions speculatively

» No architectural effects are visible until instruction is committed
» Speculatively executed instructions also impact the micro-architectural state

» The attacker can influence what instructions get executed speculatively

89 R DistriN=t

Speculative execution

> All major processors support
speculative execution

» Processor implementations are pipelined

» To keep the hardware busy, instructions
are executed out-of-order and
speculatively

» No visible architectural effects of
speculatively executed instructions — but
there are persistent micro-architectural
effects

IF | ID | EX IMEM
i IF | ID | EX WB
o IF | ID MEM| WB
IF EX |MEM| WB
ID | EX |[MEM| WB

90

I DistriN=t

A simple example of a speculative execution attack

attacker code

attacker memory

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al]]
// slowest j is the SECRET

for all j

array a

cache
victim memory

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];
}

}array pub

3 SECRET

array b

o1 = DistriN=t

A simple example of a speculative execution attack

attacker code attacker memory
// train the branch predictor
process (0) ; process(0); ..
// prime the cache array a
for (3=0; j<4; j++) z = a[jl;
// attack!
process (size) ; cache
// measure access time to al[]j] for all j victim memory
// slowest j is the SECRET
Branch predictor }a”ay pub
victim code learns that usu.ally 3 |SECRET
then branch is
i i i taken
void process(int i) {
int y;
wmt ¥y array b

if (i < size) y = b[pub[i]];
}

92 = DistriN=t

A simple example of a speculative execution attack

attacker code

attacker memory

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al]]
// slowest j is the SECRET

for all j

array a

cache
victim memory

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];
}

}array pub

3 SECRET

array b

93 = DistriN=t

A simple example of a speculative execution attack

attacker code

attacker memory

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al]]
// slowest j is the SECRET

for all j

array a

victim memory

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];
}

}array pub

3 SECRET

array b

94 = DistriN=t

A simple example of a speculative execution attack

attacker code

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al]]
// slowest j is the SECRET

for all j

victim code

void process(int i) {
int y;

}

if (i < size) y = b[pub[i]];

95

attacker memory

array a

victim memory

}array pub

3 SECRET

array b

= DistriN=t

A simple example of a speculative execution attack

attacker code attacker memory
// train the branch predictor
process (0) ; process(0); ..
// prime the cache array a
for (j=0; j<4; j++) z = al[jl;
// attack!
process (size); cache
// measure access time to al[]j] for all j victim memory
// slowest j is the SECRET
}array pub
CPU speculatively
victim code executes the then 3 [SECRET
branch

void process(int i) {

int y; array b

if (i < size) y = b[pub[i]];
}

96 = DistriN=t

A simple example of a speculative execution attack

attacker code

attacker memory

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al]]
// slowest j is the SECRET

for all j

array a

victim memory

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];
}

}array pub

SECRET

array b

97 = DistriN=t

A simple example of a speculative execution attack

attacker code

attacker memory

// train the branch predictor
process (0) ; process(0); ..

// prime the cache

for (j=0; j<4; j++) z = a[jl;
// attack!

process (size) ;

// measure access time to al[]]
// slowest j is the SECRET

for all j

array a

victim memory

victim code

void process(int i) {

int y;

if (i < size) y = b[pub[i]];
}

}array pub

SECRET

array b

08 = DistriN=t

Speculative execution attacks

> This was a simplified Spectre Variant 1 attack
» Many other variants exist

» Meltdown/Foreshadow style attacks are similar but rely on the micro-architectural effects of out-of-
order code execution that leads to an access control exception

> Note the devastating nature of this kind of attack

» on any kind of software-enforced confidentiality

» on any kind of hardware-enforced confidentiality where hardware resources are shared over
protection boundaries

> Meltdown and Foreshadow are related attacks that exploit the fact that a processor
may do speculative execution beyond a faulting instruction

99 R DistriN=t

Overview of the rest of the talk

» System model and attacker model
» Recap of how C-like languages are executed on standard processors

» Interactive attacker model
> Memory capabilities for run-time security
> Ownership types for compile-time security

» [The next wave of attacks]

100 = DistriN=t

System software plays a key role in ICT security
» Vulnerabilities in system software impact all applications on the system

» The boundaries of system software are fuzzy: your application likely relies
on system software libraries

System software is a clear example of the typical attacker-
defender race
» We are currently witnessing the transition to a new wave of attacks ...

» ... as well as significant progress with closing the previous wave

101 B DistriN=t

